Hilbert modular forms and the Gross-Stark conjecture
نویسندگان
چکیده
Let F be a totally real field and χ an abelian totally odd character of F . In 1988, Gross stated a p-adic analogue of Stark’s conjecture that relates the value of the derivative of the p-adic L-function associated to χ and the p-adic logarithm of a p-unit in the extension of F cut out by χ. In this paper we prove Gross’s conjecture when F is a real quadratic field and χ is a narrow ring class character. The main result also applies to general totally real fields for which Leopoldt’s conjecture holds, assuming that either there are at least two primes above p in F , or that a certain condition relating the L -invariants of χ and χ−1 holds. This condition on L -invariants is always satisfied when χ is quadratic.
منابع مشابه
Hilbert modular forms of weight 1/2 and theta functions
Serre and Stark found a basis for the space of modular forms of weight 1/2 in terms of theta series. In this paper, we generalize their result under certain mild restrictions on the level and character to the case of weight 1/2 Hilbert modular forms over a totally real field of narrow class number 1. The methods broadly follow those of Serre-Stark; however we are forced to overcome technical di...
متن کاملSeveral Variables p-Adic L-Functions for Hida Families of Hilbert Modular Forms
After formulating Conjecture A for p-adic L-functions defined over ordinary Hilbert modular Hida deformations on a totally real field F of degree d, we construct two p-adic L-functions of d+1-variable depending on the parity of weight as a partial result on Conjecture A. We will also state Conjecture B which is a corollary of Conjecture A but is important by itself. Main issues of the construct...
متن کاملGross–stark Units, Stark–heegner Points, and Class Fields of Real Quadratic Fields
Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We present two generalizations of Darmon’s construction of Stark–Heegner points on elliptic curves defined overQ. First, we provide a lifting of Stark–Heegner points from elliptic curves to cert...
متن کاملNonsolvable number fields ramified only at 3 and 5
For p = 3 and p = 5, we exhibit a finite nonsolvable extension of Q which is ramified only at p via explicit computations with Hilbert modular forms. The study of Galois number fields with prescribed ramification remains a central question in number theory. Class field theory, a triumph of early twentieth century algebraic number theory, provides a satisfactory way to understand solvable extens...
متن کاملWeights in Serre’s Conjecture for Hilbert Modular Forms: the Ramified Case
Abstract. Let F be a totally real field and p ≥ 3 a prime. If ρ : Gal(F/F ) → GL2(Fp) is continuous, semisimple, totally odd, and tamely ramified at all places of F dividing p, then we formulate a conjecture specifying the weights for which ρ is modular. This extends the conjecture of Diamond, Buzzard, and Jarvis, which required p to be unramified in F . We also prove a theorem that verifies on...
متن کامل